Tag Archives: GIS


Visualizing GIS data with R and Open Street Map

In this post I way to share with you some code to use Openstreetmap – maps as a backdrop for a data visualization. We will use the RgoogleMaps-package for R. In the following I will show you how to make this graph.

1. Download the map

I wanted to take a closer look at an area around my former neighborhood, which is in Bochum, Germany.

bb<-qbbox(lat = c(lat_c[1]+0.01, lat_c[1]-0.01), lon = c(lon_c[1]+0.03, lon_c[1]-0.03))

Once this is done, you can download the corresponding Openstreetmap tile with the following line.

OSM.map<-GetMap.OSM(lonR=bb$lonR, latR=bb$latR, scale = 20000, destfile=”bochum.png”)

2. Add some points to the graphic

Now your second step will most likely be adding points to the map. I choose the following two.

lat <- c(51.47393, 51.479021)
lon <- c(7.22667, 7.222526)
val <- c(10, 100)

As the R-package was mainly build for google-maps, the coordinates need to be adjusted by hand. I made the following functions, that take the min and max value from the downloaded map.

lat_adj<-function(lat, map){(map$BBOX$ll[1]-lat)/(map$BBOX$ll[1]-map$BBOX$ur[1])}
lon_adj<-function(lon, map){(map$BBOX$ll[2]-lon)/(map$BBOX$ll[2]-map$BBOX$ur[2])

Now you can add some points to the map. If you want them to mean anything it may be handy to specify an alpha-level and change some aspects of the points, e.g. size, color, alpha corresponding to some variable of interest.

PlotOnStaticMap(OSM.map, lat = lat_adj(lat, OSM.map), lon = lon_adj(lon, OSM.map), col=rgb(200,val,0,85,maxColorValue=255),pch=16,cex=4)

Here is the full code:

#define the part of the world you want to plot. Here the area around my former home.
bb<-qbbox(lat = c(lat_c[1]+0.01, lat_c[1]-0.01), lon = c(lon_c[1]+0.03, lon_c[1]-0.03))
# download the tile from OSM
OSM.map<-GetMap.OSM(lonR=bb$lonR, latR=bb$latR, scale = 20000, destfile="bochum.png")
#Add some coordinates
lat<- c(51.47393, 51.479021)
lon<- c(7.22667, 7.222526)
val <- c(0, 255)
#function to adjust the coordinates
lat_adj<-function(lat, map){(map$BBOX$ll[1]-lat)/(map$BBOX$ll[1]-map$BBOX$ur[1])}
lon_adj<-function(lon, map){(map$BBOX$ll[2]-lon)/(map$BBOX$ll[2]-map$BBOX$ur[2])}
PlotOnStaticMap(OSM.map, lat = lat_adj(lat, OSM.map), lon = lon_adj(lon, OSM.map), col=rgb(255,0, val,90,maxColorValue=255),pch=16,cex=4)
dev.print(jpeg,"test.jpeg", width=1204, height=644, units="px")

Distributing Python Scripts – the Batchtraveller.app

[en]This is a short intro on how Python-scripts can be packaged into an easy to distribute mac-app.

Essentially I followed two tutorials. The first on how to turn your python script into a self-contained app, the second on how to make compressed diskimages for mac. The final result aswell as the files necessary to reproduce the steps can be downloaded here. A detailed desription can be found in the remainder of this post.

Continue reading

GIS on a shoestring – Getting traveltimes from google

The analysis of geospatial information is currently a big trend in medicine and public health. Even though some may want to convince you that this can only be achieved with the latest and most expensive software, I am not convinced. First, analysis  of spatial data dates back to at least 1856 when John Snow investigated Cholera-outbreaks in London. Second, as I try to demonstrate today some very interesting analysis and data can be retreived essentially for free.

While I have already made a post on how to plot freely availible geospatial data in R in a previous post , this post will show you how to use Python to access the google maps database and gather e.g. travel times and distances to/from various locations with known zip-codes.

Please note that this is my first Python skript. So it will certainly not meet the high standards you might have developed based on previous posts. On the up-side, you will get the baby step instructions.

Update 2011/07/03: A much more user-friendly version of the script that adds guis to select a proper csv-file, containing start and end-adressess and to store the results can be found here. If you are afraid of Python, you can use the stand-alone Mac app “batchtimer” that basically contains all files necessary from here.

Continue reading


Visualizing geographic data with R


Viele Daten, die man erhebt, sind örtlich gebunden. In R kann man solche Daten sehr schön mit dem Package sp darstellen. Alles, was man braucht sind:

  1. Kartenmaterial: Also Beschreibungen der Kanten. Eine sehr gute Datenbank hierfür ist die GADM database of Global Administrative Areas. Für Deutschland gibt es dort eine Karte aller Kreise, die als R-Datenobjekt gespeichert sind – nett oder?
  2. Daten, die einen lokalen Bezug haben. Viele gibt es in Genesis Datenbank des Statistikportals dem gemeinsamen Datenangebot der Statistischen Bundesämter. Ich hab’ mir vorgenommen einfach mal die Anzahl der Krankenhausbetten zu plotten. Hier ist das Ergebnis:



Continue reading